MRF Agent Based Segmentation: Application to MRI Brain Scans

نویسندگان

  • Benoit Scherrer
  • Michel Dojat
  • Florence Forbes
  • Catherine Garbay
چکیده

The Markov Random Field (MRF) probabilistic framework is classically introduced for a robust segmentation of Magnetic Resonance Imaging (MRI) brain scans. Most MRF approaches handle tissues segmentation via global model estimation. Structure segmentation is then carried out as a separate task. We propose in this paper to consider MRF segmentation of tissues and structures as two local and cooperative procedures immersed in a multiagent framework. Tissue segmentation is performed by partitionning the volume in subvolumes where agents estimate local MRF models in cooperation with their neighbours to ensure consistency of local models. These models better reflect local intensity distributions. Structure segmentation is performed via dynamically localized agents that integrate anatomical spatial constraints provided by an a priori fuzzy description of brain anatomy. Structure segmentation is not reduced to a postprocessing step: rather, structure agents cooperate with tissue agents to render models gradually more accurate. We report several experiments that illustrate the working of our multiagent framework. The evaluation was performed using both phantoms and real 3T brain scans and showed a robustness to nonuniformity and noise together with a low computational time. This MRF agent based approach appears as a very promising new tool for complex image segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agentification of Markov model-based segmentation: Application to magnetic resonance brain scans

OBJECTIVE Markov random field (MRF) models have been traditionally applied to the task of robust-to-noise image segmentation. Most approaches estimate MRF parameters on the whole image via a global expectation-maximization (EM) procedure. The resulting estimated parameters are likely to be uncharacteristic of local image features. Instead, we propose to distribute a set of local MRF models with...

متن کامل

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

A joint Bayesian framework for MR brain scan tissue and structure segmentation based on distributed Markovian agents

In most approaches, tissue and subcortical structure segmentations of MR brain scans are handled globally over the entire brain volume through two relatively independent sequential steps. We propose a fully Bayesian joint model that integrates within a multi-agent framework local tissue and structure segmentations and local intensity distribution modelling. It is based on the specification of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007